If it's not what You are looking for type in the equation solver your own equation and let us solve it.
193=c^2
We move all terms to the left:
193-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+193=0
a = -1; b = 0; c = +193;
Δ = b2-4ac
Δ = 02-4·(-1)·193
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{193}}{2*-1}=\frac{0-2\sqrt{193}}{-2} =-\frac{2\sqrt{193}}{-2} =-\frac{\sqrt{193}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{193}}{2*-1}=\frac{0+2\sqrt{193}}{-2} =\frac{2\sqrt{193}}{-2} =\frac{\sqrt{193}}{-1} $
| (-2)/(x+4=(4)/(x+3) | | 5x/15+3x=10 | | 6x-x^2-7=0 | | 15+10z=7z | | 4(2x-1)=4x | | 3/2x+1/5x=17 | | x²+4x+12=0 | | 3/8x+1/5x=45 | | -8(1-2v)-v=112 | | |12-y|=5 | | 7x²+2=7x | | 8x-2=6×+28 | | 16-4j=-5j | | -8/9=d-1 | | 17r+14=19r | | g^2+5g=36 | | 7(2.3-0.4x)=x+15 | | 2x+6-(5-3x)=(x-4)+(6x-3) | | 2x/3-1/6=9/2 | | 16=2(y=7) | | -4+-19f=-840 | | 3x-2x+8-10=8 | | 10b-16=12b | | 2x-1x+6-14=7 | | 77-(-14j)=497 | | 4/9x+1/2x=51 | | h-5/8=1/4 | | 77–-14j=497 | | x-1=11 | | 31t+28=989 | | 10a=9a | | 4/9x-1/2x=51 |